111 research outputs found

    Characterization of electrical interferences for ground reaction sensor cluster

    Get PDF
    pre-printThis paper presents the characterization of electrical interferences for a high-resolution error-correcting biomechanical ground reaction sensor cluster (GRSC), developed for improving inertial measurement unit (IMU) position sensing accuracy. The GRSC is composed of 13 x 13 sensing nodes, which can measure dynamic ground forces, shear strains, and sole deformation associated with a ground locomotion gait. The integrated sensing electronics consist of a front-end multiplexer that can sequentially connect individual sensing nodes in a GRSC to a capacitance-to-voltage converter followed by an ADC, digital control unit, and driving circuitry to interrogate the GRSC. The characterization data shows that the single-ended (z-axis pressure) mode exhibits a large output interference due to the un-matched interconnect traces design, thus limiting sensing resolution to 8 bits. The differential mode (x/y-axes shear strain) shows a reduced interference effect, achieving a 10-bit resolution

    Electrical characterization of 26 × 26 ground reaction sensor array interfaced with two parallel electronic detection channels

    Get PDF
    pre-printThis paper presents the electrical characterization results of a 26 x 26 high-density ground reaction sensor array (HD-GRSA) interfaced with two parallel electronic detection channels. The system was developed for improving inertial measurement unit (IMU) positioning accuracy. The HD-GRSA is composed of 26 x 26 sensing nodes, which can measure dynamic ground force and shear strain associated with a ground locomotion gait. Each electronic detection channel consists of a front-end multiplexer that can sequentially connect individual sensing nodes from a 13 x 13 sub-array to a capacitance-to-voltage (C/V) converter followed by a 12-bit algorithmic ADC. The electronics were fabricated in a 0.35 μm CMOS process occupying an area of 7.7 mm2 for each channel while dissipating a DC power of 3 mW from a 3V supply. The HD-GRSA demonstrates the designed functionality achieving a gait ground velocity resolution of approximately 95 μmRMS/sec, limited by the electronic interference signals due to the long metal traces on the sensor array. Further performance improvement is expected by employing interference suppression techniques and better matching for critical wiring traces

    Fast Spectral Correlation Detector for Periodic Impulse Extraction of Rotating Machinery

    Get PDF

    Design and implementation of a loss optimization control for electric vehicle in-wheel permanent-magnet synchronous motor direct drive system

    Get PDF
    As a main driving force of electric vehicles (EVs), the losses of in-wheel permanent-magnet synchronous motor (PMSM) direct drive system can seriously affect the energy consumption of EVs. This paper proposes a loss optimization control strategy for in-wheel PMSM direct drive system of EVs which optimizes the losses of both the PMSM and the inverter. The proposed method adjusts the copper losses and iron losses by identifying the optimal flux-weakening current, which results in the PMSM achieving the lower losses in the whole operational range. Moreover there are strongly nonlinear characteristics for the power devices, this paper creates a nonlinear loss model for three-phase half-bridge inverters to obtain accurate inverter losses under space vector pulse width modulation (SVPWM). Based on the inverter loss model and double Fourier integral analysis theory, the PWM frequency is optimized by the control strategy in order to maximize the inverter efficiency without affecting the operational stability of the drive. The proposed loss optimization control strategy can quickly find the optimum flux-weakening current and PWM frequency, and as a result, significantly broaden the high efficiency area of the PMSM direct drive system. The effects of the aforementioned strategy are verified by both theoretical analysis and experimental results

    Surface acoustic wave ammonia sensor based on SiO2-SnO2 composite film operated at room temperature

    Get PDF
    Sensitive thin film layers of SnO2, SiO2 and SiO2-SnO2 were deposited on a SAW resonator using sol-gel method and spin coating techniques. Their ammonia-sensing performance operated at room temperature was characterized and their sensing mechanisms were comprehensively studied. When exposed to ammonia, the sensors made of SnO2 and SiO2-SnO2 films exhibit positive frequency shifts, whereas the SiO2 film sensors exhibit a negative frequency shift. The positive frequency shift is related to the dehydration and condensation of hydroxyl groups, which make the films stiffer and lighter. The negative frequency shift is mainly caused by the increase of mass loading due to the adsorption of ammonia. The gas sensor based on SiO2-SnO2 film shows a positive frequency shift of 631 Hz when it is exposed to ammonia with a low concentration of 3 ppm, and it also shows good repeatability and stability, as well as a good selectivity to ammonia compared with gases of C6H14, C2H5OH, C3H6O, CO, H2, NO2, and CH4

    Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19

    Get PDF
    Rationale: Use of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) is a major concern for clinicians treating coronavirus disease 2019 (COVID-19) in patients with hypertension. Objective: To determine the association between in-hospital use of ACEI/ARB and all-cause mortality in COVID-19 patients with hypertension. Methods and Results: This retrospective, multi-center study included 1128 adult patients with hypertension diagnosed with COVID-19, including 188 taking ACEI/ARB (ACEI/ARB group; median age 64 [IQR 55-68] years; 53.2% men) and 940 without using ACEI/ARB (non-ACEI/ARB group; median age 64 [IQR 57-69]; 53.5% men), who were admitted to nine hospitals in Hubei Province, China from December 31, 2019 to February 20, 2020. Unadjusted mortality rate was lower in the ACEI/ARB group versus the non-ACEI/ARB group (3.7% vs. 9.8%; P = 0.01). In mixed-effect Cox model treating site as a random effect, after adjusting for age, gender, comorbidities, and in-hospital medications, the detected risk for all-cause mortality was lower in the ACEI/ARB group versus the non-ACEI/ARB group (adjusted HR, 0.42; 95% CI, 0.19-0.92; P =0.03). In a propensity score-matched analysis followed by adjusting imbalanced variables in mixed-effect Cox model, the results consistently demonstrated lower risk of COVID-19 mortality in patients who received ACEI/ARB versus those who did not receive ACEI/ARB (adjusted HR, 0.37; 95% CI, 0.15-0.89; P = 0.03). Further subgroup propensity score-matched analysis indicated that, compared to use of other antihypertensive drugs, ACEI/ARB was also associated with decreased mortality (adjusted HR, 0.30; 95%CI, 0.12-0.70; P = 0.01) in COVID-19 patients with hypertension. Conclusions: Among hospitalized COVID-19 patients with hypertension, inpatient use of ACEI/ARB was associated with lower risk of all-cause mortality compared with ACEI/ARB non-users. While study interpretation needs to consider the potential for residual confounders, it is unlikely that in-hospital use of ACEI/ARB was associated with an increased mortality risk
    • …
    corecore